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[1] We use observations, climate models and reanalysis
output to examine the relationship between changes in
temperature and changes in precipitable water. In climate
models these variables are highly correlated over the
tropical oceans, with a similar scaling ratio for interannual
and decadal time scales. This result is consistent with the
most recently developed satellite datasets. In contrast,
scaling rations based either on an earlier version of the
satellite measurements or reanalysis show scaling ratios that
are inconsistent with models, and are dependent on time
scale. These results demonstrate that climate model output
is useful for evaluating differences between divergent
observational datasets. Citation: Mears, C. A., B. D. Santer,

F. J. Wentz, K. E. Taylor, and M. F. Wehner (2007), Relationship

between temperature and precipitable water changes over tropical

oceans, Geophys. Res. Lett., 34, L24709, doi:10.1029/

2007GL031936.

1. Introduction

[2] Observations from earth orbiting satellites play an
important role in monitoring climate change over the past
few decades [Solomon et al., 2007]. Secular changes in air
temperature, surface temperature, sea-ice and cloud extent,
precipitation, water vapor, and Earth’s radiation budget have
all been studied using satellite measurements. For some
climate variables (e.g., surface temperature), it is possible to
use in situ data to validate long-term trends in satellite
measurements [Comiso, 2003; Reynolds et al., 2002]. For
other variables, the use of in situ data is severely limited by
its low quality or sparse coverage.
[3] Consider, for example, lower tropospheric tempera-

ture, which has been monitored since November 1978 by a
series of microwave radiometers flown on weather satellites.
The confidence with which these measurements can be used
to assess decadal scale changes in temperature is reduced by
uncertainties in characterizing and adjusting for several
sources of calibration error [Christy et al., 2003; Mears et
al., 2006; Mears and Wentz, 2005]. Independent measure-
ments made by radiosondes have been used to help validate
the satellite data [Christy et al., 2007]. Unfortunately, the
use of radiosonde-based atmospheric temperatures as an
absolute reference is limited by both the paucity of obser-
vations over the tropical and southern oceans, and the

uncertainty caused by poorly documented changes in in-
strumentation and observing practice. In a recent study,
Randel and Wu [2006] used the spatial-temporal structure of
the discrepancies between satellite and radiosondes meas-
urements to argue that despite the best efforts of researchers
to remove inhomogeneities in the radiosonde data [Lanzante
et al., 2003a; Lanzante et al., 2003b; Thorne et al., 2005],
substantial errors may remain. Alternatively, Free and
Seidel [2007] argue that part of these discrepancies may
be due to errors in the satellite data. Problems with the
radiosonde data may be even worse for measurements of
water vapor in the lower atmosphere [Trenberth et al.,
2005].
[4] In the future, data from satellite sounders may be

validated using a yet-to-be-constructed network of high
quality reference radiosonde stations [World Meteorological
Organization, 2007], or with Global Positioning System
(GPS) radio occultation measurements available since 2001
[Kursinski et al., 1997]. Such methods, however, cannot be
used to validate satellite data for the pre-GPS era. An
alternative approach is to compare satellite derived temper-
atures to a complementary dataset that is expected to be
highly correlated with the measurements in question. Wentz
and Schabel [2000] compared changes in tropospheric and
surface temperatures with changes in total column water
vapor or ‘‘precipitable water’’ (W), and found strong
correlations between all three variables over tropical oceans.
Fu and Johanson [2004] evaluated the consistency of
temperature trends at the surface and in different atmospher-
ic layers, and Santer et al. [2005] compared the tropospheric
amplification of surface temperature changes in climate
models and observations with the amplification behavior
inferred from basic theory. In the latter study, model data
were used to estimate the ratio of changes in the surface
temperature to changes in lower tropospheric temperature
(TLT) across timescales. These ratios were then used to
evaluate the divergent TLT trends in different observational
datasets.
[5] Under the assumption of constant relative humidity,

the Clausius-Clapeyron relationship yields a ratio between
changes in water vapor and changes in temperature that
depends solely on temperature. In order to extend this
simple scaling relationship to accurately estimate the ratio
between changes in vertically-weighted lower tropospheric
temperature (dTLT) and changes in column-integrated value
precipitable water anomaly (dW), additional information is
required about the vertical profile of relative humidity in
both the marine boundary layer, where the bulk of the water
vapor resides, and in the free troposphere above. We turn to
climate models to obtain this information. Even though the
physics that determines these profiles is represented in a
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number of different ways in different climate models, we
find that all models yield essentially the same dW/dTLT

relationship. This allows us to place physically plausible
bounds on the dW/dTLT scaling ratio.
[6] Wentz and Schabel [2000] found a tropical oceanic

dW/dTLT scaling ratio of 6.7%/K on interannual time scales,
but a significantly larger scaling ratio of 9.5%/K for decadal
trends. On interannual time scales, Wentz and Schabel used
the ratio of the standard deviations of the time series of W
and TLT, s(W)/s(TLT), to characterize the scaling ratio, and
on decadal time scales they used the ratio of linear trends.
Here, we consider whether improved and extended satellite-
based W and TLT datasets yield scaling ratios that are more
consistent across timescales. We focus on the tropical
oceans, where satellite measurements of W are available
and seasonal variations are relatively small.

2. Observational Data and Reanalysis Output

[7] The satellite-based water vapor observations analyzed
here are microwave measurements of W from the Special
Sensor Microwave/Imager (SSM/I) [Wentz, 1997; Wentz et
al., 2007]. We also examined three different satellite esti-
mates of TLT, each obtained from microwave emissions
monitored by the Microwave Sounding Unit (MSU) and the
Advanced Microwave Sounding Unit (AMSU). The first
two estimates are versions of the TLT dataset constructed by
the University of Alabama at Huntsville (UAH V5.1 and
V5.2) [Christy et al., 2003]. The third estimate is the latest
TLT dataset produced by Remote Sensing Systems (RSS
V3.0) [Mears and Wentz, 2005]. We include the earlier,
outdated version of the UAH data (V5.1) to show the
sensitivity of our analysis to small discrepancies between
datasets.

[8] The SSM/I-derived W dataset is constructed by
intercalibrating the measurements from six different satel-
lites for each channel at the radiance level, and then using a
common algorithm to retrieve the precipitable water [Wentz
et al., 2007]. The signal to noise ratio for detecting
moistening due to increases in tropospheric temperature
using microwave-based satellite measurements of W is
about 10 times larger than for detecting changes in TLT

[Wentz et al., 2007]. We therefore consider W to be more
accurate than TLT, despite the difficulty in validating the
satellite-derived W data against in situ measurements.
[9] While lower tropospheric temperature data from

MSU and AMSU are similarly intercalibrated at the radi-
ance level, the uncertainties mentioned above lead different
groups to obtain different results for long-term trends. There
are also differences between the TLT trends in the NCEP-50
[Kalnay et al., 1996], and ERA-40 [Uppala et al., 2005]
reanalyses.

3. Model Output

[10] We compare the observed data with output from 16
different fully coupled ocean-atmosphere climate models
(Table S1 of the auxiliary material).1 Model results were
made available through the World Climate Research Pro-
gramme’s (WCRP’s) Coupled Model Intercomparison Proj-
ect phase 3 (CMIP-3). The simulations considered here are
20th century experiments that include historical changes in
anthropogenic and natural forcings [Santer et al., 2007]. All
simulations incorporate changes in well-mixed greenhouse
gases and in the direct effects of sulfate aerosols. Other
forcings, such as other aerosols, ozone, and solar irradiance,

Figure 1. Smoothed time series of (a) TLT and (b) W from satellite observations, reanalysis, and CMIP-3 coupled model
results for the tropical oceans (30S to 30N). For six of the models shown here, multiple 20th century simulations were
produced, each starting from a different initial condition. Only the first member of each of these ensembles is shown.

1Auxiliary materials are available in the HTML. doi:10.1029/
2007GL031936.
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vary from model to model. We found that the presence of
these forcings has no significant effect on the dW/d TLT

scaling that is the focus of this study. In many cases, the
same model was run with different initial conditions,
yielding separate realizations of the climate ‘‘noise’’ (the
unforced variability) that are superimposed on the climate
‘‘signal’’ (the underlying response to the applied forcing).
We examined a total of 32 such realizations.

4. Analysis Methods

[11] For each model (or reanalysis) we calculate vertical-
ly weighted average temperatures that correspond to the
satellite-derived TLT product. We form tropical (30�S to
30�N) oceanic time series of TLT and W for each data
source. These time series are smoothed using a low-pass
filter [Lynch and Huang, 1992] with a cutoff period of
12 months. We express the W anomaly time series in terms
of a percent change, because the percent change in W for a
given change in temperature varies slowly with temperature
For each TLT/W time series pair, we tabulate the correlation

coefficient, the overall least-squares linear trends, and the
interannual scaling ratio in Table S2.

5. Trends in Precipitable Water and Temperature

[12] The smoothed TLT time series from satellites and
reanalysis show relatively small differences in decadal-scale
trends (Figure 1a). Because the simulated results are from
fully coupled models, W and TLT fluctuations associated
with modes of internal variability, such as the El Niño/
Southern Oscillation (ENSO), do not occur at the same time
as the observed events, except by chance. For W, there are
noticeable differences between the satellite and reanalysis
data, particularly for ERA-40 (Figure 1b). These discrep-
ancies are largest in regions where the reanalyses are poorly
constrained by radiosonde measurements, such as the trop-
ical oceans that are of interest here [Trenberth et al., 2005].
[13] We computed the trends over the 1988–1999 period,

for which both satellite and model W and TLT results are
available. The satellite and reanalysis TLT trends are all
within the range predicted by the models (Figure 2a). In
contrast, Santer et al. [2005] found that over a longer period

Table 1. Trends in dW and dTLT, Scaling Ratios, and Correlations Between dW and dTLT Found in Climate Models, Satellite Data, and

Reanalyses for the Tropical Oceansa

Trend(dW),
%/decade

Trend(dTLT),
K/decade

Trend Ratio,
%/K

Interannual
Ratio, %/K Corr.

CMIP-3 models (median values
and standard deviation)

1.13 (0.73) 0.20 (0.11) 5.68 (1.5) 5.98 (0.82) 0.958 (0.036)

SSM/I-RSS V3.0 TLT 1.46 0.28 5.23 5.36 0.901
SSM/I-UAH V5.2 TLT 1.46 0.19 7.87 5.78 0.876
SSM/I-UAH V5.1 TLT 1.67 0.08 22.2 5.97 0.790
NCEP-50 �0.57 0.03 �18.6 6.12 0.891
ERA-40 3.03 0.06 47.1 10.5 0.606

aStatistics that lie more than 2-s from the mean of the model distribution are shown in bold. The climate model and reanalysis results are for the 1981–
1999 period, while the satellite results are for the 1988–2006 period, so the trend results from the satellite data and the models and reanalysis cannot be
directly compared. Also, for UAH V5.1, the calculations are performed over the 1988–2005 period when both SSM/I and UAH 5.1 data are available.

Figure 2. Histograms of TLT and W summary statistics from the CMIP-3 model results over the tropical oceans. (a) Trends
(1988–1999) in TLT, (b) trends (1988–1999) in W, (c) correlation coefficient between TLT and W, and (d) interannual
scaling ratio sW/sTLT

.
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(1979–1999) the TLT trend for the now outdated version of
the UAH data (UAH V5.1) was outside the range of model
predictions. Our present use of the shorter trend period
1988–1999 results in a larger spread in modeled trends and
omits the poorly-calibrated December 1986–February 1987
overlap between the NOAA-09 and NOAA-10 satellites.
[14] Both the SSM/I W trend (Figure 2b) and the RSS

TLT trend are toward the high end of the model distribution.
This is partly due to the influence of the large 1997–1998
El Nino event, which inflates the observed TLT and W trends
[Santer et al., 2007]. The reanalysis W trends are near
opposite tails of the modeled distribution.

6. Co-Variability of Precipitable Water and
Temperature Anomalies

[15] In themodeldata, thevariability of tropically-averaged
TLT and W anomalies is highly correlated on interannual
timescales, with a median correlation of 0.96 (Figure 2c).
The correlations between dWand dTLT for UAHV5.1-SSM/I
and ERA-40 are both well outside the modeled distribution.
Those for the newer versions of the satellite data are consistent
with the model results, though at the lower end. This is due in
part to short-term sampling-induced errors in the satellite
measurements, but we cannot rule out the possibility that the
models analyzed over constrain the monthly covariability
between TLT and W.
[16] In order to obtain reliable estimates of the correlation

coefficient and scaling ratio, we analyzed slightly different
periods for different datasets (see Table 1). This slight
inconsistency is not important to our conclusions, because
the correlations and scaling are relatively insensitive to the
small changes in forcing between these two time periods.
[17] The histogram of the model-derived s(W)/s(TLT)

scaling ratio (Figure 2d) peaks around 6%/K (median value
5.97). Scaling ratios for the satellite observations and
NCEP-50 lie well within the modeled distribution, while
the ERA-40 value is significantly different from the model
results (Table 1).

[18] To investigate behavior on longer timescales, we
show a scatter plot of TLT and W trends (Figure 3b). The
modeled trends scatter closely around a straight line with a
slope of 6.84 ± 0.47 %/K. Within the uncertainty estimates,
the slope of this line agrees with the slope of the fit to the
variability scatter plot (Figure 3a, slope = 7.21 ± 0.41 %/K),
demonstrating that the scaling ratio is close to being
timescale invariant.

7. Discussion

[19] We have established that a nearly constant, time-
scale-invariant ratio between dTLT and dW is a robust
feature of 16 fully coupled climate models, consistent with
physical expectations. This similarity occurs despite large
structural differences between models, in such aspects as
their spatial resolution, external forcings included, and
parameterization schemes for sub-grid-scale phenomena.
[20] While both reanalyses have tropical oceanic TLT time

series that are very similar to satellite observations (but with
slightly less decadal warming), the W time series differ
substantially in observations and reanalyses. The ERA-40
results show markedly lower correlations between W and
TLT than the models or the latest satellite observations. On
decadal timescales, the reanalyses differ significantly from
the model expectations (Figure 3, Table 1). We conclude
that there are large errors in W in both reanalyses. These
may be due to some combination of uncorrected long-term
drifts in the assimilated observations and discontinuities that
arise when an observing system (e.g., microwave observa-
tions by satellites) starts or stops providing data to the
reanalysis system [Bengtsson et al., 2004; Uppala et al.,
2005].
[21] The SSM/I W data and the now outdated UAH V5.1

TLT data also form an inconsistent pair, since both the
interannual timescale correlation (Figure 2c, Table 1) and
the decadal-trend scaling ratio (Figure 3b, Table 1) are far
from those simulated by models. In contrast, the two
combinations that contain the newer versions of the satellite
TLT dataset (RSS V3.0 and UAH V5.2) are both broadly

Figure 3. Scatter plot of the variability of W as a function of (a) the variability in TLT, and (b) the trend in W as a function
of the TLT trend for the tropical oceans. Trends are calculated over the periods given in Table 1. In Figure 3a, UAH V5.2
and UAH V5.1 yield nearly identical results, so the UAH V5.2 data point is hidden. The lines shown bisect the two
different linear fits obtained with first W, then TLT assumed to be the dependent variable. Isobe et al. [1990] show that this
is a good method for finding an estimate of an underlying relationship in the presence of unknown measurement errors and/
or scatter that is not strictly related to measurement error, as is the case here.
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consistent with the model results on both interannual and
decadal time scales. The consistency of two most recent TLT

datasets with the less noisy and more reliable SSM/I-derived
W dataset greatly increases our confidence in the reality of
lower tropospheric warming over the SSM/I period ana-
lyzed here. Our results demonstrate the use of climate model
output for evaluating observational datasets, particularly in
cases where there is agreement across models, timescales,
and with basic physical principles.
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