Aquarius MWR
Part 1: Geolocation

Joel Scott
Remote Sensing Systems
03/28/2012
CONAE Geolocations

Brightness Temperature
Channel: 23H, all horns
All Ascending passes
2011, 276-365
CONAE EIA >65 OR <45

2011, 331
All channels, all horns
Ideal: 52 & 58 degrees
RSS Geolocation

• Algorithm input
 – Spacecraft position/velocity/orientation data
 • From Aquarius L1A
 • Interpolated to MWR observation times
 – Pointing angles (alpha, beta) of each horn and channel

• Run geolocation algorithm
 – Output: latitude, longitude, EIA, azimuth

• Comparing CONAE and RSS geolocations
 – There are issues with CONAE geolocations at high latitudes
 – Present in nearly every orbit
Geolocation Differences

- Geolocation differences near the equator (+/-5 degrees)
 - Goal: within 0.005 degrees (~0.55 km)
 - Reality:
 - ~1.3 km for 37 GHz
 - ~0.5 km for 23 GHz
- Adjust pointing angles
 - Find the combination of alpha/beta that minimized the RMS of great circle distance
 - Varied each pointing angles by +/- 0.1 degrees
 by 0.01 degrees
Geolocation Differences

Nominal Alpha/Beta Values

Adjusted Alpha/Beta Values

RMS Great Circle Distance (km)

All horns, all channels less than 0.2 km

Near the equator
Geolocation Differences

Lat/Lon at 40 N
- Nominal Alpha/Beta Values
- Adjusted Alpha/Beta Values

Lat/Lon at 40 S
- Nominal Alpha/Beta Values
- Adjusted Alpha/Beta Values

RMS Great Circle Distance (km)
Geolocation Summary

• The adjusted pointing angles do NOT improve the RMSD away from the equator
 – Points to an issue with CONAE’s geolocations

• Moving forward:
 – Use the nominal pointing angles in our geolocation algorithm
 – Geolocation merits
 • Verified geolocation algorithm, using spacecraft data
 • Removes the odd values at high latitudes and scattered outliers
 • Otherwise, fairly good agreement between geolocations
Geolocation Difference Difference Histogram

2011, 276-365

90% of within 2 km

Great Circle Difference (km)
Aquarius MWR
Part 2: Geophysical Retrievals
Geophysical Retrievals

- RSS retrievals
 - Algorithm initialized
 - RSS geolocations
 - Reynolds SST
 - NCEP winds
 - Linwood’s MWR brightness temperatures (23H, 37H, 37V)
 - Output retrievals
 - SST, wind, water vapor, cloud liquid water, rain rate
- Collocate to F17/WindSat retrievals
RSS Geophysical Retrievals
Averaging period: 2011, 276-365

Water Vapor (mm), ASC/PM

Water Vapor (mm), DSC/AM
RSS Geophysical Retrievals

Averaging period: 2011, 276-365

Cloud Liquid Water (mm), ASC/PM

Rain Rate (mm/hr), ASC/PM

Cloud Liquid Water (mm), DSC/AM

Rain Rate (mm/hr), DSC/AM
Collocated F17/WindSat Vs. MWR Atmospheric Water Vapor

Bias: 4.2 mm
STD of difference: 3.4 mm
MWR Retrievals

• Rain affects salinity retrieval accuracy
 – Two fold
 • Rain contamination
 • Fresh water input
 – Rain may cause errors greater than 0.1 psu
 Can be higher for intense, fast-moving storms

• Correction via satellite rain
 – MWR
 – Collocated F17/WindSat data
Rain contamination:
Rain \rightarrow higher T_B
Higher $T_B \rightarrow$ lower SSS

Rain-induced SSS change:
Rain \rightarrow fresh water input
Fresh water \rightarrow lower SSS
Aquarius : F17/WindSat
Collocation Time Difference

• 92% of AQ collocations with F17/WindSat are within 90 minutes

• Aquarius SSS collocates with MWR within 3 minutes

• MWR has better collocations in time with salinity retrievals
Rain Correction

• Collocated F17 and WindSat data
 – Up to 90+ minutes separation in time
 – Intense rain events and fast-moving storms

• MWR’s advantages
 – MWR retrievals within 3 minutes of salinity retrievals
 – Continued satellite inter-calibration to tune our geophysical retrieval algorithms