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[1] Multidecadal-scale changes in atmospheric temperature have been measured by both
radiosondes and the satellite-borne microwave sounding unit (MSU). Both measurement
systems exhibit substantial time varying biases that need to removed to the extent
possible from the raw data before they can be used to assess climate trends. A number
of methods have been developed for each measurement system, leading to the creation
of several homogenized data sets. In this work, we evaluate the agreement between
MSU and homogenized radiosonde data sets on multiyear (predominantly 5-year) time
scales and find that MSU data sets are often more similar to each other than to
radiosonde data sets and vice versa. Furthermore, on these times scales the differences
between MSU data sets are often not larger than published internal uncertainty estimates
for the RSS product alone and therefore may not be statistically significant when the
internal uncertainty in each data set is taken into account. Given the data limitations it is
concluded that using radiosondes to validate multidecadal-scale trends in MSU data, or
vice versa, or trying to use such metrics alone to pick a ‘winner’ is an ill-conditioned
approach and has limited utility without one or more of additional independent
measurements, or methodological, or physical analysis.
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1. Introduction

[2] Multidecadal changes in global atmospheric tempera-
ture have primarily been estimated using measurements from
two disparate measurement systems, balloon-borne radio-
sondes (beginning in the late 1950s) and satellite-borne
microwave sounding instruments. The microwave measure-
ments are constructed by merging together measurements
from the Microwave Sounding Units (MSUs, late 1978–
2005) and the Advanced Microwave Sounding Units
(AMSUs, mid 1998 to the present). Hereafter we refer to the
merged MSU/AMSU data sets as MSU data sets for brevity.
Unfortunately, neither MSU nor radiosonde records have
been designed with absolute calibration and traceability.
Numerous changes in instrumentation, observing practice,
time of observation and various other undesirable measure-
ment aspects pervade these records [Thorne et al., 2011a]. A
number of techniques to characterize and remove these

problems have been developed and refined, resulting in a
number of “homogenized” data sets for each type of data.
Ideally, the resulting methodologically distinct data sets
would report similar changes in atmospheric temperature
during the post-1978 period (the satellite era) when both
observing systems were in operation. This would yield
confidence that data issues had been adequately understood
and removed, leading to a good estimate of the true climate
system evolution. Unfortunately, this has not been the case,
which has led to intense debate about the details of recent
changes in the Earth’s atmospheric temperatures. As the
homogenization strategies have evolved over time, trends
from radiosonde and MSU data have come into somewhat
better agreement for global-scale averages (although still a
substantial error as a percentage of the relatively small trend
signal), while more substantial discrepancies remain in the
tropics [Lanzante et al., 2006]. However, overall trend
agreement can hide interesting differences at shorter time-
scales and may be a result of largely fortuitous cancellation
of substantial differences on these shorter timescales.
[3] In the evaluation of satellite data, particularly in the

early part of any mission, it is customary to “validate” the
satellite data by comparing retrieved geophysical parameters
with in situ measurements related to the variable in question.
This is a useful exercise, particularly when the principles
underlying the remote sensing techniques are still being
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tested, and when the accuracy of the in situ measurements is
expected to exceed the accuracy of the satellite-based mea-
surements. It is tempting to extend this approach to the
evaluation of long-term trends in geophysical variables with
well-established measurement techniques, such as atmo-
spheric sounding. For example, one could use radiosonde/
satellite inter-comparison studies to try to make determina-
tions of satellite data set quality. In fact a number of studies
have been used to suggest that one of the MSU data sets is
more accurate than the others, based on a closer agreement
with various radiosonde measurements. Randall and
Herman [2008] compared MSU measurements with the
results from a subset of a single radiosonde data set and
concluded that the University of Alabama, Huntsville
(UAH) satellite data set was more accurate than the RSS
data. They focused on trends in the data set differences over
5-year and 10 year periods, and on a limited analysis period.
Christy et al. [2010] reached a similar conclusion using a
similar short-term trend analysis, but analyzed only within
the deep tropics, and only one time period (1989–1995).
Christy et al. [2007] used tropical radiosonde measurements
(both raw soundings and a single homogenized data set) to
argue that the RSS data set contains a spurious warming
trend in the tropics during the early 1990s, with the bulk of
the analysis of MSU-radiosonde differences focusing on this
period. Conversely, Po-Chedley and Fu [2012] argued for a
significant discontinuity in the early portion of the UAH
record associated with the short life-time NOAA-9 satellite.
All these papers used a limited number of radiosonde data
sets, and focused their attention on a limited time period.
[4] Over the last decade, there have been numerous other

studies that have included inter-comparisons between MSU
and homogenized radiosonde data sets at both global
[Haimberger et al., 2008; Lanzante et al., 2006; Seidel et al.,
2004] and regional scales [Christy and Norris, 2006; Thorne
et al., 2007, 2011b; Titchner et al., 2009]. A recently com-
pleted study of 32-year trends in both MSU and homoge-
nized radiosonde data [Mears et al., 2011] serves in part to
update such studies to the current time. When the internal
uncertainty in the Remote Sensing Systems (RSS) data set is
taken into account, the trends in this data set tend to be
consistent with those from homogenized radiosonde data
sets for the tropospheric channels considered in this paper.
The exception to this finding is in the deep tropics, where
data sets from RSS and the Center for Satellite Applications
and Research (STAR) tend to show trends that are high
compared to most adjusted radiosonde trends.
[5] The rest of this paper is structured as follows.

Section 2 outlines the overarching methodological philoso-
phy and approach. Section 3 provides details of the data used
in our study. In Section 4, we compare time series of 5- and
10- year trends derived from each data set for various
regions, and in Section 5 we investigate the impact of esti-
mates of internal uncertainty on our findings. In Section 6
we revisit the analysis of interlayer differences performed
by Randall and Herman [2008], and in Section 7 we con-
clude with a discussion of our findings.

2. Methodological Approach and Rationale

[6] The purpose of this paper is to comprehensively
investigate whether it is appropriate to use MSU/radiosonde

intercomparisons as arbiters of MSU data set quality.
Arguably this can only be done if two over-arching condi-
tions are both adequately met. First, the radiosonde mea-
surements being considered need to be a sufficiently
unbiased representation of the true evolution of the climate
system. Second, the results of the comparison need to be
valid in the statistical sense, given the inevitable uncertainty
in both the MSU data sets and homogenized radiosonde data
sets.
[7] Several papers, often authored by the developers of the

radiosonde data sets themselves, have addressed the first
question and have mostly concluded that substantial
decadal-scale errors may remain even in the homogenized
data [Lanzante et al., 2003; Randel and Wu, 2006; Titchner
et al., 2009]. A number of investigators have specifically
caveated that it is probable that significant residual errors
remain in the tropics where the network is sparse and most
observations are daytime only when radiation effects are
more important [Randel and Wu, 2006; Sherwood et al.,
2005, 2008; Titchner et al., 2009].
[8] For the second question, for both MSU and radio-

sonde data sets, there are two types of important error
[Thorne et al., 2005a]. First is the structural uncertainty,
which is the uncertainty caused by the choice of a single
processing method from the set of all possible reasonable
methods. This uncertainty can best be characterized by the
spread of results from different data sets constructed by
different research groups. Such an estimate is predicated
upon the assumptions that all methods are reasonable (peer
review being considered a necessary but not necessarily
adequate condition) and that the very finite number of pub-
lished estimates provides an unbiased estimate of the much
larger spread of possible estimates. Second, there is internal
uncertainty, unique to each product, that arises from uncer-
tainty in parameters used to perform the various adjustments
after a processing method is chosen. In the case of micro-
wave sounders, this includes the uncertainty in calibration
offsets, and the adjustments for instrument nonlinearity and
drifts in local measurement time. This type of uncertainty
can be determined by an analysis of the individual uncer-
tainty in each of the adjustment steps used. In Mears et al.
[2011], we performed such an analysis for the RSS data
sets using a Monte-Carlo approach.
[9] This paper assesses the issue of robustness of MSU/

radiosonde intercomparisons to inevitable uncertainty in
radiosonde and MSU records. Specifically, it aims to com-
prehensively address the suitability of such comparisons
given the known data limitations. It aims to address the
following questions and in so doing update the results of the
various intercomparisons [e.g., Randall and Herman, 2008;
Christy et al., 2007, 2010] that have specifically looked to
assess the quality of different MSU products by reference to
radiosonde data and data sets:
[10] 1. What is the impact of use of only 1 (as has been

common), a subset, or all available radiosonde data sets?
[11] 2. What is the impact of different approaches to

accounting for sampling mismatches between radiosonde
and satellite data?
[12] 3. What are the implications of undertaking analyses

for limited time periods rather than the whole period of
record?
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[13] 4. What impact recently published comprehensive
parametric uncertainty estimates for both one MSU and one
radiosonde product may have on the results.
[14] 5. Is the physical interpretation of the difference

between MT and LT used in some previous studies correct?
[15] 6. Do updated versions of many of the data sets pre-

viously considered impact the results and implications of
such analyses?

3. Data Sets Used in This Study

[16] We focus our attention on MSU deep-layer tempera-
ture measurements (and equivalent estimates from radio-
sondes) of the temperature of the atmosphere with the bulk
of the signal arising from the troposphere. The first MSU
product, TMT (Temperature Middle Troposphere) is an
average of the atmospheric temperature with a weighting
function that extends from the surface to the lower strato-
sphere, and peaks about 5 km above the surface. The second
MSU product, TLT (Temperature Lower Troposphere)
involves a mathematical recombination of several of the off-
nadir view scenes of the TMT channel [cf. Mears et al.,
2011, Figure 4]. The TLT product has a weighting func-
tion that peaks much lower, about 2 km above the surface
[Mears and Wentz, 2009a; Spencer and Christy, 1992].
[17] MSU/AMSU equivalent temperatures have been cal-

culated from the radiosonde data (gridded temperatures on
standard pressure levels) using a method based on radiative
transfer calculations [Rosenkranz, 1975, 1993] and simple
models of the surface emissivity [Meissner and Wentz, 2012;
Prigent et al., 2000].

3.1. Satellite-Based Products

[18] All satellite records considered here are derived from
the MSU/AMSU series of microwave sounders, which make
measurements near a complex of Oxygen absorption lines
centered at 60 GHz [Smith et al., 1979]. For TMT, we con-
sider the most recent versions of the data set constructed by
three different groups, the University of Alabama, Hunts-
ville (UAH V5.4) [Christy et al., 2003], the Satellite Tech-
nology and Research Division at NOAA (STAR 2.0) [Zou
et al., 2006, 2009; Zou and Wang, 2011], and Remote
Sensing Systems (RSS V3.3) [Mears and Wentz, 2009a,
2009b]. For TLT, only two versions are available, UAHV5.4
and RSS V3.3. TLT is more influenced by radiation emitted
by Earth’s surface than TMT. Also, the diurnal cycle in sur-
face skin temperatures is much larger than that in the free
troposphere or even that of the near-surface air temperatures.
Taken together with the uncertainty introduced through the
weighted combination of view angles, this yields larger
uncertainties in TLT than TMT [Mears and Wentz, 2005,
2009a; Mears et al., 2011]. In all cases the independent
groups have applied different methods to characterize and
remove errors in the raw measurements associated with cal-
ibration errors and drifting local measurement times.

3.2. Radiosonde Based Products

[19] For radiosondes, we take the approach of consider-
ing all published homogenized radiosonde data sets:
HadAT2 [Thorne et al., 2005b], RAOBCORE (Version 1.4)
[Haimberger, 2007], RICH (Version 1) [Haimberger et al.,
2008], IUK [Sherwood et al., 2008], and RATPAC [Free

et al., 2005; Lanzante et al., 2003]. The first four data
sets are fully or partially (in the case of HadAT operational
version) automated methods to find and estimate the size of
“breakpoints” in the time series for a radiosonde station and
create adjusted versions of the radiosonde data. The IUK
data set ends in 2006. The version of the RATPAC data
used here, RATPAC-B, uses a manual breakpoint detection
and adjustment method for data from 1958 to 1997. After
1997, no further adjustments were made. All other data sets
made adjustments over the entire period of record. We use
RATPAC-B because it is a station-based data set, and thus
has sufficient information to construct a gridded data set,
which is required to perform the spatial sampling steps in
our analysis. The companion data set RATPAC-A, contains
automated adjustments up to the present time, but is not
available in gridded form. We also show results for a subset
of the RATPAC data set (RATPAC_RW) which was devel-
oped by Randel and Wu [2006] to remove radiosonde sta-
tions with the largest errors in the stratosphere. It is not
known the extent to which these errors are also present in
these stations’ tropospheric measurements that are studied
here. The RATPAC_RW subset is included here solely
because it was the focus of the earlier satellite/radiosonde
comparison study performed by Randall and Herman
[2008].

3.3. Data Set Internal Uncertainty Estimates

[20] For the RSS (satellite) and HadAT (radiosonde) pro-
ducts there exist ensembles that attempt to quantify the data
set uncertainty [Mears et al., 2011; Titchner et al., 2009;
Thorne et al., 2011b]. Such estimates can help to inform on
whether differences between pairs of data sets arise through
chance choices given the chosen methodological frame-
works employed or reflect very real and substantial impacts
of differences in methodological choices The MSU error
ensembles were calculated by combining estimated errors in
the adjustments for measurement time drift and realizations
of the spatial/temporal sampling noise introduced by
incomplete sampling [Mears et al., 2011]. The resulting
error data sets are available at the same spatial and temporal
resolution as the base data set. This makes it possible to
construct 400 realizations of this data set that are consistent
with the estimated uncertainty by adding them to the base-
line, satellite derived temperature data set. The HadAT
ensemble used herein are derived from perturbed versions of
the Hadley Centre’s automated neighbor based homogeni-
zation procedure. Here we utilize the 20-member seasonal
ensemble described in Thorne et al. [2011b] that most
closely recreated the real climate system behavior across a
range of analogs to the real world created by Titchner et al.
[2009]. Further details on the derivation of these uncertainty
products are given in the auxiliary material and in the
referenced papers.1

[21] The radiosonde and MSU data ensembles being
considered are fundamentally distinct. The Remote Sensing
Systems MSU error model [Mears et al., 2011] is a per-
turbed ensemble around an assumption of essentially zero
mean bias in the operational product version. The radio-
sonde ensemble makes no assumption about correctness of

1Auxiliary materials are available in the HTML. doi:10.1029/
2012JD017710.
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the operational solution but rather undertakes fundamental
end-to-end recalculations of the solution with a focus solely
on breakpoint identification and adjustment issues to create
the ensemble. Further, the sources of error are distinct for the
MSU and radiosonde issues as would be expected given that
they are fundamentally different observing technologies,
each with unique issues. Therefore although the error esti-
mates may be presented in a similar manner and may
ostensibly appear very similar to the reader we would cau-
tion against over-interpretation as they are not strictly
intercomparable.
[22] Despite these caveats, it is useful to combine the two

error analyses to produce an estimate of the expected error in
the RSS-HadAT difference time series that we evaluate
herein, so that the statistical significance in the HadAT-RSS
difference time series can be evaluated. To do this we dif-
ference pairs selected from the above ensembles to create an
ensemble of difference time series. Because there are far
fewer HadAT ensemble members available, each HadAT
ensemble member is paired with 20 different RSS ensemble
members, to yield an ensemble of 400 possible difference
time series.

4. Time Series Comparisons

[23] We begin by comparing the MSU and homogenized
radiosonde temperature anomalies time series of large spatial
scale averages which are useful because of the significant
uncertainties in the measurements from isolated radiosondes
and in single MSU grid points. Over larger spatial scales,
many components of these uncertainties are reduced by the
averaging procedure. We choose to focus on monthly
means, averaged over nearly the entire globe (75S to 75N,
“global”), or deep tropics (20S to 20N, “tropical”). In both
regions, the radiosonde spatial coverage is far from com-
plete. Figure 1 shows a typical radiosonde sampling pattern.
We also performed our analysis for the northern and south-
ern extratropics separately. Summary plots from these anal-
yses are presented in the auxiliary material.
[24] A simple (and common) way to construct time series

from gridded data is to use area-weighted means of all
available data. Comparing time series of simple area-

weighted global averages of radiosonde data with the area-
weighted means of the more spatially complete MSU data
can lead to substantial discrepancies, due to the large areas
that are unsampled by radiosondes, and the changes in
radiosonde sampling over time. Additional discrepancies
occur because the radiosonde sampling patterns in the tro-
pics exclude the eastern tropical Pacific Ocean, where the
ENSO signal is often the strongest. A good approach to
resolving these issues is to sample the MSU data at the
actual radiosonde sampling for each month [Free and Seidel,
2005; Mears and Wentz, 2009b], and then compute an area-
weighted average from the sub-sampled data for each month
to produce a “global” average. This modifies the MSU
means such that they more closely match the area-weighted
radiosonde means, and automatically takes into account the
presence or absence of a radiosonde measurement for a
given location and month and thus changes in spatial sam-
pling over time. We refer to the sampled satellite means as
“sampled at radiosonde locations” (SRL).
[25] Because simple area-weighted averages have often

been used to perform radiosonde/satellite intercomparisons,
we show the results for both methods to assess sensitivity to
this choice. In Figures 2a and 2b, we show area-weighted
global time series for the operational HadAT product and
each MSU data set for both TLT and TMT. The large
month-to-month variations in all data sets make it difficult to
draw conclusions from this plot. In Figures 2c and 2d, we
show the area-weighted difference time series (HadAT –
MSU) for each MSU data set, and in Figures 2e and 2f, we
show the same difference series, except using SRL averag-
ing to calculate the satellite time series. In all cases shown,
the SRL time difference time series exhibit much less vari-
ance than the area-weighted time series. We made similar
plots for the other 5 radiosonde data sets we consider (see
auxiliary material). In all cases, the standard deviations of
the difference time series were reduced, particularly on short
time scales. Even when the difference time series were fil-
tered to remove variability on time scales shorter than one
year using a digital filter [Lynch and Huang, 1992], 11 of
12 TLT cases and 13 of 18 TMT cases showed reduced
standard deviation, suggesting that the SRL procedure also
tends to improve the agreement on interannual and longer

Figure 1. Sampling pattern for the HadAT data set for January, 2003. Grey boxes represent locations of
valid data (5 degree latitude by 10 degree longitude gridboxes with at least one reporting radiosonde sta-
tion for the month), and white regions are areas where data is not available.
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time scales. These results reinforce our previous conclu-
sion [Mears and Wentz, 2009b] that MSU/radiosonde
comparisons are best performed using SRL averaging.
[26] Even with SRL sampling, the difference time series

show significant variability on intraannual time scales that
makes it difficult to draw conclusions. One approach that
has been used to help reduce the contribution of short-time
scale variability is the analysis of trends in intermediate-
length sub-samples of a longer time series. Randall and
Herman [2008] used the Randel and Wu [2006] subset of
the RATPAC radiosondes to analyze 5 and 10 year trends in
tropospheric UAH and RSS data. In Figures 2g and 2h, we
show plots of trends of rolling 5-year sub-samples of the
difference time series, with each slope plotted at the location
of the center of the sub-sample. When the 5-year trend is
greater than zero, the MSU data showed warming relative to
the radiosonde data over the 5-year period, and conversely,
when the 5-year trend is less than zero, the MSU data cooled
relative to the radiosonde data. It is immediately obvious that
the 5 or 10-year trends can accentuate both the intermediate
and long time-scale differences, as concluded by Randall
and Herman. For example, in the TMT data (Figure 2f) the
MSU data (for all 3 MSU data sets) warms relative to

HadAT over the 1990–1998 period. This is easier to see in
Figure 2h as large maxima in the short term trends which
reach their greatest magnitude at the center of this period.
[27] In Figures 3 (and 4), we plot the 5-year trends in

global (tropical) difference time series for both TLT and
TMT and for all combinations of radiosonde and MSU data
sets (in the auxiliary material, we show similar sets of plots
for the northern and southern extratropics, see Figures S6
and S7). There are several common features that stand out.
For TLT, perhaps the most obvious is a peak in the RSS and
UAH minus radiosonde differences centered near 1995
which is consistently somewhat larger for RSS. This feature,
due to the warming of MSU data relative to radiosonde data,
has been previously discussed in the literature as it occurs
during the period where the RSS warms relative to the UAH
data set [Christy and Norris, 2009; Christy et al., 2007;
Randall and Herman, 2008]. The better agreement between
UAH and the radiosondes (as shown by the lower peak for
UAH) during this period, combined with the sign of tem-
perature changes in the tropics during the period surrounding
the eruption of Pinatubo, has been used by these authors to
argue that the RSS data set contains a warming bias during
this period. The analysis of this period is complicated by the

Figure 2. Graphical representation of various stages in processing the radiosonde and satellite data. (left)
TLT data and (right) TMT. (a and b) Unmodified globally average time series for the HadAT radiosonde
data set, and each of the satellite data sets. (c and d) The difference between HadAT and each of the sat-
ellite data sets (satellite - HadAT) using area-weighted averaging. (e and f) The difference between HadAT
and each of the satellites data sets using SRL averaging for the satellite data. Note the large reduction of
differences on most time scales. (g and h) 5-year trends calculated from the SRL differences in Figures 2e
and 2f.
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competing effects of volcano-induced cooling and ENSO-
induced warming. This is also the period over which general
improvements to radiosonde solar radiation shielding yiel-
ded an apparently artificial cooling across much of the
radiosonde network [Sherwood et al., 2005], an effect which
may not entirely have been removed with available radio-
sonde data sets [e.g., Sherwood et al., 2008]. Hence inter-
pretation of these differences is fraught with physical and
instrumental considerations that significantly inhibit a clean
inference regarding which MSU product may be closer to
the unknown true temperature evolution.
[28] We note that there are two other prominent features in

the 5-year trend plots that have not received as much atten-
tion. First, there is a second common feature, a low point

centered near 2003. This indicates a period when the MSU
data sets are cooling relative to the radiosonde data sets. This
feature roughly coincides with the end of the data record for
NOAA-14, the last MSU satellite, and may be related. We
note that for TMT, there is a unexplained trend difference
between MSU and AMSU measurements during 1999–2005
[Mears et al., 2011]. Second, UAH tends to show a peak
centered near 1986, which is either absent or much smaller
for RSS and may be related to calibration problems with the
NOAA-9 satellite, a finding confirmed by Po-Chedley and
Fu [2012]. Over the entire time series, the effects of the
relative warming in the 1990s and the relative cooling in the
2000s tend to cancel, leaving the 32-year trends for MSU

Figure 3. Difference in global SRL-averaged 5-year trends (Satellite – Radiosonde) for each radiosonde
and satellite data set. (left) The TLT channel and (right) TMT. For TLT, we also plot the SRL difference
between the two satellite data sets (UAH – RSS).
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and radiosonde data in relatively good agreement [Mears
et al., 2011].
[29] For the TLT plots in Figure 3 (left), we also plot the 5

year trend differences for RSS-UAH. Using the mean
absolute value of each of the trend difference curves over the
entire time period in Figure 5a in all cases except for
RAOBCORE and RICH, the MSU data sets are in closer
agreement with each other than they are with the radiosonde
data sets. (We also evaluated the differences using the root-
mean square difference as a difference metric, which yielded
nearly identical results. See Figure S8 in the auxiliary
material.) Note that the RAOBCORE data set, which has
been asserted to be corrupted by anomalous warming due to
underlying errors in the ERA-40 reanalysis used in its

construction [Christy et al., 2010], is the radiosonde data set
that agrees best with both satellite data sets when evaluated
using our method. Given that the reanalysis field used to
derive adjustments in RAOBCORE is strongly influenced
by the MSU/AMSU data (among others) this is perhaps not
surprising. The RICH data set generally agrees second best
with the MSU data. This data set is more independent from
the background reanalysis, and thus is less subject to the
criticisms put forth in Christy et al. [2010].
[30] The ordering of the level of agreement between the

radiosonde data sets and any of the MSU data sets
(RAOBCORE, RICH, IUK, HadAT, RATPAC) is the same
as the ordering of the radiosonde trends over the entire sat-
ellite era. If the 5-year trends were strongly influenced by the

Figure 4. Same as Figure 3, except that the data are averaged over radiosonde locations in the deep tro-
pics (20S-20N). Similar sets of plots for the southern and northern extratropics are available in Figures S6
and S7 in the auxiliary material.
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overall trend, this would be expected on mathematical
grounds, as the overall trend is related to the accumulated
5-year trends. However, the difference between 5-year
trends is dominated by differences on short time scales. We
checked this by performing a second set of calculations with
the overall trend removed from each time series before the 5-
year trends were calculated. The resulting version of Figure 5
(see Figure S9 in the auxiliary material) is nearly identical.
[31] For TMT, we also include data from the STAR MSU

data set. Again, there are several common features across all
MSU and radiosonde data sets, including the peak in the mid
1990s, and a minimum in the mid 2000s. There is a second
sharp minimum centered near 1987 in the UAH curve, a
feature that is significantly reduced in the RSS data, and
almost nonexistent in the STAR data. Also note the
appearance of a strong seasonal cycle in the UAH data after
1998. (This feature is even more prominent in Figure 2, and
may be related to the method used to combine MSU and
AMSU measurements. AMSU measurements began in the
middle of 1998). Again, the difference between the MSU
data sets and the radiosonde data sets is larger than the
spread between the MSU data sets themselves, as shown by
the mean absolute values of the difference curves that are
plotted in Figure 5b.
[32] Figure 4 is analogous to Figure 3, except the data are

averaged over the deep tropics (20S to 20N) instead of the
entire globe, with summary results presented in Figures 5c
and 5d. The set of tropical plots shares many of the fea-
tures of the global plots, such as the relative warming in the
MSU data sets in the mid 1990s, and the relative cooling in

the late 1980s and early in the 21st century. One important
difference is that there appear to be more differences
between the radiosonde data sets in the 1990s, with the MSU
data sets showing strong warming relative to radiosondes in
IUK and RATPAC, with considerably less warming relative
to RAOBCORE and (to a lesser extent) RICH. For HadAT,
most of the relative MSU warming is shifted to a short time
period in the early 1990s. It is not surprising that the dif-
ferences between data sets are larger in the tropical case
because the number of radiosonde stations in the sample has
decreased, leading to more variability. Also, in the tropics,
the radiosonde coverage is more sparse that in the northern
extratropics, making it more difficult to perform the neces-
sary adjustments for those methods that rely to some extent
upon comparisons with near neighbors (HadAT, IUK,
RICH, and to a lesser degree, RATPAC). Finally, many
tropical sites have had daytime-only ascents which are most
impacted by solar heating effects and these were signifi-
cantly mitigated through the 1990s [Sherwood et al., 2005;
Randel and Wu, 2006] leading, on average, to a false cooling
signal in the raw record, which may not have been entirely
removed. Differences may relate to the efficacy of the vari-
ous radiosonde products in removing this artifact and it is
important to note that the sign and timing implies that pos-
sibly none of the radiosonde products have adequately
removed this artifact rather than a consistent bias in MSU
products. In Figure 5c (TLT), the best agreement between
tropical satellite and MSU results is for the RAOBCORE
and RICH data sets, with the UAH data set in better agree-
ment than RSS except for the IUK data set, and in Figure 5d,

Figure 5. Summary of the mean absolute value of the overlapping 5-year trend difference time series
from Figure 4. (a) TLT, global. (b) TMT, global. (c) TLT, deep tropics (20S-20N). (d) TMT, deep tropics.
In most cases, the difference between different satellite data sets is substantially less than the difference
between the satellite data sets and the radiosonde data sets. The exception to this is for the RAOBCORE
and RICH data sets for TLT.
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the best agreement again is with the ROABCORE and RICH
data sets, but with the UAH data set typically showing more
disagreement than the RSS and STAR data sets. For TMT,
the RSS and STAR data sets are extremely close to each
other on the 5-year scale, despite substantial differences in
32-year trends.
[33] The results for RATPAC-RW shown here differ from

those presented in Randall and Herman [2008] for two
important reasons. First, newer versions of the both the RSS
and UAH MSU data sets were used in this analysis. Second,
and more importantly, Randall and Herman did not sub-
sample the MSU data at the radiosonde locations, but instead
compared global radiosonde averages to area-weighted,
land-only MSU averages. A majority (29 of 47) of the
RATPAC-RW stations are located on islands (9 stations) or
in coastal regions (20 stations) and thus are not representa-
tive of a land-only average (see auxiliary material for a map
showing these results, and a precise description of our defi-
nition of land, coastal, or ocean).
[34] Despite extensive efforts we were unable to exactly

replicate the results of Randall and Herman due to insuffi-
cient methodological clarity in their paper and thus no direct
comparison is possible here. To illustrate the relative
importance of variations in sampling method and data set
updates, we present several alternative versions of Figure 5b
in the auxiliary material (see Figure S10). We find that the
changes in data set version are less important than changes
in sampling method, and that while the use of land-only
MSU data reduces the mean absolute difference relative to
the use of global land-and-ocean averages, both are sub-
stantially worse than sampling at the radiosonde locations.

[35] Another question to investigate is the degree to which
agreement on the 5-year time scale is useful for predicting
agreement on a longer time scale. In Figure 6, we plot the
absolute value of the difference between multidecadal trends
in globally average TMT (1979–2010, except for IUK,
which ends in 2006) as a function of the mean absolute value
of each of the trend difference curves. This measure of 5-
year trend agreement is the same as is plotted in Figure 5.
The plot shows very little correlation (correlation coefficient
= 0.025) between the level of agreement on 5 year time
scales, and the agreement between multidecadal trends. This
suggests that the agreement between 5 year trend time
series is essentially useless for predicting agreement on
longer time scales. This therefore calls into question many
of the assertions made explicitly within or publicly (and
often in a high profile manner) as a result of such inter-
comparisons [e.g., Randall and Herman, 2008; Christy et al.,
2010; Po-Chedley and Fu, 2012] with regards to the funda-
mental quality or likely long-term trend errors in candidate
products found to be ‘anomalous’ in a given sub-period.

5. Impact of Uncertainty Estimates

[36] The preceding section serves as an estimate of the
structural (or between method) uncertainty in MSU/radio-
sonde comparisons. We now investigate the impact of
internal uncertainty on both the MSU and radiosonde data
sets. Errors in both types of data set are often correlated in
both time and location. Only the RSS and HadAT data sets
have associated internal uncertainty estimates that are

Figure 6. Scatterplot of the absolute value of the 32-year trend difference (1979–2010) in global means
of TMT as a function of mean absolute deviation of the 5-year trend difference time series computed from
the same difference time series. Each point represents the comparison of one data set (satellite or radio-
sonde) with another (satellite or radiosonde).
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sufficiently detailed to accurately estimate the error in trends
at various time scales (Section 2.3).
[37] For the RSS/HadAT case, in Figures 7a and 7b, we

show the median difference between 5-year RSS - HadAT
difference trend error ensemble (we emphasize that the
median of the HadAT error ensemble is quite different from
the operational version of HadAT considered in Section 3).
We also plot the 95% confidence interval (CI) around the
median difference. The 95% confidence interval was calcu-
lated from an ensemble of 400 realizations of the RSS-
HadAT difference. The nth member of this ensemble was
constructed by subtracting the (n modulo 20)th member of
the HadAT ensemble from the nth member of the RSS
ensemble. For both TLT and TMT, the 95% CI range for the
differences between RSS and HadAT encompasses the zero
line 59% of the time, implying that the differences between
the 5-year trends are larger than can be easily accounted for
by the combination of internal errors. We note that the
HadAT adjustment procedure was not designed to remove
errors on short time scales, so that the short-term error
represented by the ensemble may underestimate the true
error in the radiosonde data.
[38] Figures 8a–8c summarize a similar analysis of the

differences between the RSS and UAH satellite data sets

(Figures 8a and 8b), and between the RSS and STAR sat-
ellite data sets (Figure 8c). Because detailed uncertainty
ensembles are not available for the UAH and STAR data
sets, this part of the analysis only includes uncertainty esti-
mates for the RSS data sets. For TLT, the RSS-UAH 95%
uncertainty range encompasses the zero line 63% of the
time, and for TMT the uncertainty ranges encompass the
zero line for 30% (UAH) and 62% (STAR) of the time
period. We speculate that if the uncertainty in the UAH and
STAR data sets were included, these percentages would
increase, but the exact amount is difficult to reliably estimate
without comparably comprehensive uncertainty analyses
from the UAH and STAR groups.

6. Inter-channel Differences

[39] Randall and Herman [2008] (hereafter RH2008) also
studied the differential trends between the TLT and TMT
layers for the UAH, RSS, and RATPAC-RW data sets. They
motivated this work as a method for diagnosing the impact
of the diurnal cycle on the merged data set, since the
adjustments made for changes in local measurement time are
much larger for TLT than TMT. We recommend using such
differences with caution. Because of the overlap between the

Figure 7. Differences between 5 year trends with uncertainty estimates for channels TLT and TMT. All
time series and uncertainty estimates are global averages sampled at the location of HadAT radiosonde
measurements (which end in 2003 in this ensemble and hence the series truncation). The thick black line
is the median difference time series, and the yellow region surrounding it contains 95% of the instances in
the uncertainty ensemble. The uncertainty ensemble includes the estimated uncertainty in both the RSS
and HadAT data sets.

Figure 8. Differences between 5 year MSU trends with RSS-only uncertainty estimates for channels
TLT and TMT. (a) RSS-UAH for TLT. (b) RSS-UAH for TMT. (c) RSS-STAR for TMT. In all panels,
the thick black line is the median difference time series, and the yellow region surrounding it contains
95% of the instances in the RSS uncertainty ensemble.
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TLT and TMT weighting functions and the subsequent
cancellation caused by differencing, the TLT – TMT dif-
ference contains a large amount of information from the
surface and lower stratosphere. Furthermore, a large portion
of the resulting weighting kernel (including most if not all of
the atmosphere above 6Km) has a negative weighting which
is hard to interpret in a physical manner. Figure 9 shows the

temperature weighting functions for TLT, TMT, and the
TLT – TMT difference. About 12% of the total absolute
value of the weight comes from surface emissions, and about
25% comes from above 12 km, or 200 hPa. These differ-
ences should not be thought of as the difference in temper-
ature between the lower and middle troposphere. This is
particularly a concern for radiosonde data because of the
increase in the relative weight of radiosonde measurements
at pressures ≤200 hPa where the adjusted radiosonde data
sets may be less reliable [Randel and Wu, 2006].
[40] With these caveats in mind, here we update (to the

extent we are able to replicate) and extend the RH2008
analysis. There are 4 important differences between the
present analysis and RH2008. First, we use the most
recent versions of the available data sets. Second, we
consider all available homogenized radiosonde data sets
(Section 2.2) rather than a single estimate. Third, we use
SRL averaged MSU data instead of land-only area-weighted
data (Section 3). And fourth, we consider results from
outside the limited temporal ranges plotted in RH2008.
Figure 10 shows the 5-year and 10-year trend differences
between TLT and TMT for each radiosonde data set. In each
case, the SRL MSU averages are plotted, which accounts for
the difference in the RSS and UAH curves between plots.
These plots correspond to Figure 4 in RH2008, which they
used to argue that the UAH satellite data sets were more
accurate than the RSS versions. The bottom row of plots
shows results from the RATPAC-RW data set analyzed by
RH2008. In Table 1, we present a summary of the mean
absolute differences (MAD) and the number of months that
each satellite data set is closer to the radiosonde data set. For
the 5-year trends, the 3 data sets are in reasonably good
agreement over the bulk of the time period, in agreement
with the findings of RH2008, though in general, we find that
the RSS data are in better agreement with the radiosonde
data than the UAH data for these metrics (Table 1). For the
10 year time period, we find that the largest differences are
outside the region plotted by RH2008, and that within the
1993–2002 period plotted, the RSS data set is in better
agreement with the radiosonde data than UAH, in direct con-
tradiction to the findings of RH2008. The probable reasons for
this different result are both the use of MSU data sampled at
the radiosonde locations (instead of land-averaged satellite
data), and (to a lesser degree) the use of updated versions of the
MSU data sets. The largest differences between the MSU data
sets and radiosonde data sets tend to occur in the early part of
the time series for both the 5-year and 10-year trends, outside
the region plotted in RH2008. Again, we find that the two
MSU data sets tend to be closer to each other than to any of the
radiosonde data sets.
[41] For the other 5-year period plots, the conclusions are

similar to that reached above for the RATPAC-RW data.
The MSU data sets are in fairly good agreement with the
radiosonde data sets during the period plotted in RH2008.
During the pre-1990 period the analyses typically show TLT
warming relative to TMT more in the radiosonde data than
in the MSU data sets, with the MSU data sets being rela-
tively similar. For the 10 year time period plots, this differ-
ence becomes more important, with TLT warming much
more than TMT in the radiosonde data sets. During the
1993–2002 period plotted in RH2008, the results differ
substantially from radiosonde data set to radisonde data set,

Figure 9. Weighting functions as a function of height for
TLT, TMT, and the TLT minus TMT difference for ocean
scenes. Because of the large absolute weight in the strato-
sphere and the surface, the TLT minus TMT difference
should not be interpreted as the difference between the lower
and middle tropospheric temperatures. There is also a non-
negligible contribution from surface emission in each prod-
uct: TLT 10.6%, TMT 4.8%, and TLT minus TMT 5.8%.
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even for the MSU data set SRL estimates, which makes it
difficult to draw conclusions. Note that the only difference
between the different versions of the MSU data is the spatial/
temporal sampling used to construct the averages. After
about 2000, TLT tends to warm relative to TMT more in the

radiosonde data sets, except for HadAT, where TLT cools
slightly relative to TMT after about 2004.
[42] An improvement that can be made to the RH2008

method is to consider the difference between TLT and the
“total troposphere” (TT) MSU product proposed by Fu and

Figure 10. Differences (TLT minus TMT) in short-term trends in atmospheric temperature between adja-
cent layers for each radiosonde data set. In each case, the satellite data is sampled at the radiosonde loca-
tions, and the differences in spatial sampling lead to the differences between the satellite results for the
different panels. The temporal range plotted in RH2008 is shaded in yellow.
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Johanson [2005]. This product has reduced weight in the
stratosphere, and thus is less affected by overall stratospheric
cooling, and stratospheric warming events caused by vol-
canic eruptions. In the auxiliary material, we show an alter-
native version of Figure 10 calculated using TT instead of
TMT. This replacement generally reduces the variability of
the time series, probably due to the reduction of the influ-
ence of volcano-induced stratospheric warming, but does not
alter the conclusions.

7. Discussion

[43] We have used methods similar to those presented in
RH2008 to analyze 5- and 10-year trends in adjusted
radiosonde and Microwave Sounding Unit (MSU) mea-
surements of tropospheric temperature utilizing an inclusive
range of MSU and radiosonde products. In all cases we find
that there are several time periods during which there is
substantial disagreement between 5-year trends in radio-
sonde data sets and 5-year trends in the MSU data sets.
Sometimes these differences cancel over longer time peri-
ods, perhaps leading to false or overly confident conclusions
about the agreement between satellite and radiosonde data
sets on multidecadal time scales. When data from different
MSU – radiosonde pairs are examined, the results indicate
that all MSU-sonde differences share many common fea-
tures, and that in most cases, the differences between
radiosondes and MSU is much larger than between different
MSU data sets, or between different radiosonde data sets.
Given the current state of knowledge, we are unable to
determine whether this commonality is due to shared pro-
blems in the MSU data sets, or to shared problems with the
radiosonde data sets, or a combination of both. It is possible
that both types of data sets retain substantial common biases
within their respective types. For MSU data the three dif-
ferent versions are derived from identical raw source data. If
there is a time-dependent bias in the raw data that none of
the merging procedures is able to detect and remove, then
the common bias would obviously remain in all three data
sets. A similar argument holds for the radiosonde data sets,
though in this case, the underlying, unadjusted data sets
differ in the number and locations of radiosonde stations
used.
[44] In addition, an analysis of the internal error in the

MSU data sets suggests that the differences between RSS
and UAH 5-year trends are possibly not statistically signif-
icant for TLT, while the differences between the RSS, STAR
and UAH data sets may be significant for TMT. This type of

analysis is hampered by the lack of a detailed error analysis
in the UAH and STAR products.
[45] Although radiosonde MSU comparisons have some

information content, on their own they are ill-posed to assess
satellite data set quality issues because both types of data
almost certainly retain unknown and poorly quantified bia-
ses. Additional entirely independent measurements such as
from the Hyperspectral Infrared Sounder, GPS Radio
Occultation or reanalyses may help. But these are addition-
ally fraught by a variety of issues relating to sampling (clear
sky only for HIRS, a different atmospheric volume and
temporal samples of opportunity for GPS-RO), interpreta-
tion (both satellite measures are responsive to more than just
temperatures), period of record, and independence of record
(particularly so for reanalyses). Despite this, bringing in such
additional independent estimates may offer a future avenue
of investigation. Additional insights may accrue from
physical rather than wholly statistical interpretation of the
records. Finally, real insights on biases and their causes will
only accrue through additional in-depth analyses of the
observations and accompanying metadata themselves to
better understand the causes of biases and differences in the
respective records.
[46] In conclusion, when the similarity of the MSU data

sets relative to radiosonde data sets is combined with the
lack of statistical significance in many of the difference
findings, we conclude that trying to determine which MSU
data set is “better” based on short-time period comparisons
with radiosonde data sets alone cannot lead to robust con-
clusions. This is trivially true for any case where two poorly
constrained and understood measurements of the same
measurand exist. When they disagree the problem is under-
constrained such that it is solely possible to conclude that
one or both of the measurements is (are) biased relative to
the true state of the measurand. Sadly, this is all too common
in climate and is why SI traceable measurement programs
such as the GCOS Reference Upper Air Network [Seidel
et al., 2009] are vital to our future ability to monitor the
changing climate.

References
Christy, J. R., and W. B. Norris (2006), Satellite and VIZ-radiosonde inter-
comparisons for diagnosis of nonclimatic influences, J. Atmos. Oceanic
Technol., 23(9), 1181–1194, doi:10.1175/JTECH1937.1.

Christy, J. R., andW. B. Norris (2009), Discontinuity issues with radiosonde
and satellite temperatures in the Australian region 1979–2006, J. Atmos.
Oceanic Technol., 26(3), 508–522, doi:10.1175/2008JTECHA1126.1.

Christy, J. R., R. W. Spencer, W. B. Norris, W. D. Braswell, and D. E.
Parker (2003), Error estimates of version 5.0 of MSU-AMSU bulk

Table 1. Interlayer Difference Statistics for 5 and 10 Year Trends

5-Year Trend Differences 10-Year Trend Differences

Number of
Months RSS

Closer

Number of
Months UAH

Closer

MAD
RSS-Sonde
(k/decade)

MAD
UAH-Sonde
(K/decade)

Number of
Months RSS

Closer

Number of
Months UAH

Closer

MAD
RSS-Sonde
(k/decade)

MAD
UAH-Sonde
(k/decade)

HadAT 218 109 0.1006 0.1511 210 57 0.0628 0.0791
RAOBCORE 205 122 0.0745 0.1266 172 95 0.0505 0.0847
RICH 222 105 0.0597 0.1219 202 65 0.0291 0.0793
IUK 178 89 0.0647 0.1289 150 57 0.0373 0.0794
RATPAC 217 99 0.0741 0.0984 205 51 0.0339 0.0670
RATPAC_RW 215 101 0.0930 0.1009 174 82 0.0456 0.0690

MEARS ET AL.: SATELLITE-RADIOSONDE COMPARISONS D19103D19103

13 of 14



atmospheric temperatures, J. Atmos. Oceanic Technol., 20(5), 613–629,
doi:10.1175/1520-0426(2003)20<613:EEOVOM>2.0.CO;2.

Christy, J. R., W. B. Norris, R. W. Spencer, and J. J. Hnilo (2007), Tropo-
spheric temperature change since 1979 from tropical radiosonde and
satellite measurements, J. Geophys. Res., 112, D06102, doi:10.1029/
2005JD006881.

Christy, J. R., B. M. Herman, R. Pielke Sr., P. Klotzbach, R. T. McNider,
J. J. Hnilo, R. W. Spencer, T. Chase, and D. H. Douglass (2010), What
do observational datasets say about modeled tropospheric temperature
trends since 1979?, Remote Sens., 2, 2148–2169, doi:10.3390/rs2092148.

Free, M., and D. J. Seidel (2005), Causes of differing temperature trends
in radiosonde upper air data sets, J. Geophys. Res., 110, D07101,
doi:10.1029/2004JD005481.

Free, M., D. J. Seidel, J. K. Angell, J. R. Lanzante, I. Durre, and T. C.
Peterson (2005), Radiosonde Atmospheric Temperature Products for
Assessing Climate (RATPAC): A new data set of large-area anomaly time
series, J. Geophys. Res., 110, D22101, doi:10.1029/2005JD006169.

Fu, Q., and C. M. Johanson (2005), Satellite-derived vertical dependence
of tropospheric temperature trends, Geophys. Res. Lett., 32, L10703,
doi:10.1029/2004GL022266.

Haimberger, L. (2007), Homogenization of radiosonde temperature time
series using innovation statistics, J. Clim., 20(7), 1377–1403,
doi:10.1175/JCLI4050.1.

Haimberger, L., C. Tavolato, and S. Sperka (2008), Towards the elimina-
tion of warm bias in historic radiosonde records—Some new results
from a comprehensive intercomparison of upper air data, J. Clim.,
21, 4587–4606, doi:10.1175/2008JCLI1929.1.

Lanzante, J. R., S. Klein, and D. J. Seidel (2003), Temporal homogenization
of monthly radiosonde temperature data. Part II: Trends, sensitivities, and
MSU comparison, J. Clim., 16, 241–262, doi:10.1175/1520-0442(2003)
016<0241:THOMRT>2.0.CO;2.

Lanzante, J. R., T. C. Peterson, F. J. Wentz, and K. Y. Vinnikov (2006),
What do observations indicate about the change in temperatures in the
atmosphere and at the surface since the advent of measuring temperatures
vertically, in Temperature Trends in the Lower Atmosphere: Steps for
Understanding and Reconciling Differences, pp. 47–70, Clim. Change
Sci. Program, Washington, D. C.

Lynch, P., and X. Y. Huang (1992), Initialization of the HIRLAM model
using a digital filter, Mon. Weather Rev., 120, 1019–1034, doi:10.1175/
1520-0493(1992)120<1019:IOTHMU>2.0.CO;2.

Mears, C. A., and F. J. Wentz (2005), The effect of drifting measurement
time on satellite-derived lower tropospheric temperature, Science, 309,
1548–1551, doi:10.1126/science.1114772.

Mears, C. A., and F. J.Wentz (2009a), Construction of the RSSV3.2 lower tro-
pospheric dataset from the MSU and AMSUmicrowave sounders, J. Atmos.
Oceanic Technol., 26, 1493–1509, doi:10.1175/2009JTECHA1237.1.

Mears, C. A., and F. J. Wentz (2009b), Construction of the Remote Sensing
Systems V3.2 atmospheric temperature records from the MSU and AMSU
microwave sounders, J. Atmos. Oceanic Technol., 26, 1040–1056,
doi:10.1175/2008JTECHA1176.1.

Mears, C. A., F. J. Wentz, P. W. Thorne, and D. J. Bernie (2011), Assessing
uncertainty in estimates of atmospheric temperature changes from MSU
and AMSU using a Monte-Carlo estimation technique, J. Geophys.
Res., 116, D08112, doi:10.1029/2010JD014954.

Meissner, T., and F. J. Wentz (2012), The emissivity of the ocean surface
between 6–90 GHz over a large range of wind speeds and earth inci-
dence angles, IEEE Trans. Geosci. Remote Sens., 50(8), 3004–3026,
doi:10.1109/TGRS.2011.2179662.

Po-Chedley, S., and Q. Fu (2012), A bias in the midtropospheric channel
warm target factor on the NOAA-9 microwave sounding unit, J. Atmos.
Oceanic Technol., 29, 646–652, doi:10.1175/JTECH-D-11-00147.1.

Prigent, C., J. P. Wigneron, W. B. Rossow, and J. R. Pardo-Carrion
(2000), Frequency and angular variations of land surface microwave
emissivities: Can we estimate SSM/T and AMSU emissivities from
SSM/I emissivities?, IEEE Trans. Geosci. Remote Sens., 38(5),
2373–2386, doi:10.1109/36.868893.

Randall, R. M., and B. M. Herman (2008), Using limited time period trends
as a means to determine attribution of discrepancies in microwave sound-
ing unit–derived tropospheric temperature time series, J. Geophys. Res.,
113, D05105, doi:10.1029/2007JD008864.

Randel, W. J., and F. Wu (2006), Biases in stratospheric and tropo-
spheric temperature trends derived from historical radiosonde data, J.
Clim., 19(10), 2094–2104, doi:10.1175/JCLI3717.1.

Rosenkranz, P. W. (1975), Shape of the 5 mm oxygen band in the atmo-
sphere, IEEE Trans. Antennas Propag., 23(4), 498–506, doi:10.1109/
TAP.1975.1141119.

Rosenkranz, P. W. (1993), Absorption of microwaves by atmospheric
gases, in Atmospheric Remote Sensing by Microwave Radiometry, edited
by M. A. Janssen, pp. 37–90, John Wiley, New York.

Seidel, D. J., et al. (2004), Uncertainty in signals of large-scale climate
variations in radiosonde and satellite upper-air datasets, J. Clim., 17,
2225–2240, doi:10.1175/1520-0442(2004)017<2225:UISOLC>2.0.CO;2.

Seidel, D. J., et al. (2009), Reference upper-air observations for climate:
Rationale, progress, and plans, Bull. Am. Meteorol. Soc., 90, 361–369.

Sherwood, S. C., J. R. Lanzante, and C. L. Meyer (2005), Radiosonde day-
time biases and late 20th century warming, Science, 309, 1556–1559,
doi:10.1126/science.1115640.

Sherwood, S. C., C. L. Meyer, R. J. Allen, and H. A. Titcher (2008), Robust
tropospheric warming revealed by iteratively homogenized radiosonde
data, J. Clim., 21(20), 5336–5352, doi:10.1175/2008JCLI2320.1.

Smith, W. L., H. M. Woolf, C. M. Hayden, D. Q. Wark, and L. M.
McMillan (1979), The TIROS-N operational vertical sounder, Bull.
Am. Meteorol. Soc., 60, 1177–1187.

Spencer, R. W., and J. R. Christy (1992), Precision and radiosonde valida-
tion of satellite gridpoint temperature anomalies. Part II: A tropospheric
retrieval and trends during 1979–1990, J. Clim., 5, 858–866,
doi:10.1175/1520-0442(1992)005<0858:PARVOS>2.0.CO;2.

Thorne, P. W., D. E. Parker, J. R. Christy, and C. A. Mears (2005a), Uncer-
tainties in climate trends: Lessons from upper-air temperature records,
Bull. Am. Meteorol. Soc., 86(10), 1437–1442, doi:10.1175/BAMS-86-
10-1437.

Thorne, P. W., D. E. Parker, S. F. B. Tett, P. D. Jones, M. McCarthy, H.
Coleman, and P. Brohan (2005b), Revisiting radiosonde upper air tem-
peratures from 1958 to 2002, J. Geophys. Res., 110, D18105,
doi:10.1029/2004JD005753.

Thorne, P. W., D. E. Parker, B. D. Santer, M. P. McCarthy, D. M. H. Sexton,
M. J. Webb, J. M. Murphy, M. Collins, H. A. Titchner, and G. S. Jones
(2007), Tropical vertical temperature trends: A real discrepancy?,
Geophys. Res. Lett., 34, L16702, doi:10.1029/2007GL029875.

Thorne, P. W., J. R. Lanzante, T. C. Peterson, D. J. Siedel, and K. P. Shine
(2011a), Tropospheric temperature trends: History of an ongoing contro-
versy, Wiley Interdiscip. Rev. Clim. Change, 2(1), 66–88, doi:10.1002/
wcc.80.

Thorne, P. W., et al. (2011b), A quantification of uncertainties in historical
tropical tropospheric temperature trends from radiosondes, J. Geophys.
Res., 116, D12116, doi:10.1029/2010JD015487.

Titchner, H. A., P. W. Thorne, M. P. McCarthy, S. F. B. Tett, L. Haimberger,
and D. E. Parker (2009), Critically reassessing tropospheric temperature
trends from radiosondes using realistic validation experiments, J. Clim.,
22(3), 465–485, doi:10.1175/2008JCLI2419.1.

Zou, C.-Z., and W. Wang (2011), Intersatellite calibration of AMSU-A
observations for weather and climate applications, J. Geophys. Res.,
116, D23113, doi:10.1029/2011JD016205.

Zou, C. Z., M. D. Goldberg, Z. Cheng, N. C. Grody, J. T. Sullivan, C. Cao,
and J. D. Tarpley (2006), Recalibration of microwave sounding unit for
climate studies using simultaneous nadir overpasses, J. Geophys. Res.,
111, D19114, doi:10.1029/2005JD006798.

Zou, C. Z., M. Gao, and M. D. Goldberg (2009), Error structure and atmo-
spheric temperature trends in observations from the Microwave Sounding
Unit, J. Clim., 22, 1661–1681, doi:10.1175/2008JCLI2233.1.

MEARS ET AL.: SATELLITE-RADIOSONDE COMPARISONS D19103D19103

14 of 14



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


