Inter-Calibration of SSM/I F13, SSM/IS F16, and WindSat
A Holistic Approach

Frank J. Wentz and the RSS Team
Remote Sensing Systems, Santa Rosa, CA

This research is support by NASA’s Earth Science Division
Physical Oceanography & Earth System Data Records

Presented at: Ocean Science Meeting, Portland Oregon, February 23, 2010
The Problem

Volume: Nearly 100 satellite-years of observations from Microwave Radiometers.

Calibration: Each sensor has its own unique set of Sensor Calibration Problems

Precision: High precision required for Climate Studies

Satellite Microwave Radiometers

- F08
- F10
- F11
- F13
- QuikSCAT
- WindSat
- F14
- F15
- F16
- F17
- AMSR-E
Holism (from ὅλος holos, a Greek word meaning all, entire, total) is the idea that all the properties of a given system (physical, biological, chemical, social, economic, mental, linguistic, etc.) cannot be determined or explained by its component parts alone. Instead, the system as a whole determines in an important way how the parts behave.

Consistency is the steadfast adherence to the same principles, course, form, etc.
Basic Elements of Producing Earth Science Data Records

Climate Constraints
Hydrologic Balance: Evaporation = Precipitation
Constant Relative Humidity (Clausius–Clapeyron)

Direct Validation of Geophysical Retrievals
Ocean Buoys (SST, wind, rain)
Radiosondes and GPS (vapor)
Satellite Radars (wind)

Sensor Calibration
Pointing Errors (geolocation)
Attitudes Errors (roll, pitch, yaw)
Along-Scan biases
Sun Intrusion in Hot Loads
Emissive Antennas
Antenna Pattern Correction (spillover, cross pol)

Radiative Transfer Model (RTM) & Retrieval (RTM⁻¹)
EP ➔ RTM ➔ TA ➔ RTM⁻¹ ➔ EP
Methodology: Continuous Updating and Reprocessing

Validation \rightarrow **EP Adjustments** *(i.e., clear sky bias, high vapor bias)*

\downarrow

Geophysical Retrievals

\rightarrow **Retrieval Algorithm**

\leftarrow **Automatic**

\rightarrow **Radiative Transfer Model**

Simulated Antenna Temperatures

\downarrow

Calibration \rightarrow **RTM Adjustments**

Sensor Adjustments

\rightarrow **Sensor Antenna Temperatures**

Cycle Time $\approx \frac{1}{2}$ Year
Climate Constraint: Constant Relative Humidity

Nearly all climate models predict a near constant Relative Humidity with global warming. This means total water vapor will increase with rising air temperatures at a rate ≈ 7%/K.

- Original MSU air temperatures showed little warming while SSM/I water vapors showed significant moistening.
- This contradiction was due to errors in the original calibration of MSU.
- Results here show with proper calibration MSU air temperature and SSM/I water vapors agree.
- The “MSU controversy” was resolved.

Figure from: Wentz and Schabel: Nature, 403, 2000, Precise climate monitoring using complementary satellite data sets.
Climate Constraint: Evaporation = Precipitation

On global, monthly time scales, Evaporation must equal Precipitation
(Variability in storage term is extremely small)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaporation</td>
<td>961 mm/yr</td>
<td>10.1 mm/yr (1.1%)</td>
<td>12.6 mm/yr/decade (1.3%/decade)</td>
</tr>
<tr>
<td>Precipitation</td>
<td>950 mm/yr</td>
<td>12.7 mm/yr (1.3%)</td>
<td>13.2 mm/yr/decade (1.4%/decade)</td>
</tr>
<tr>
<td>Total Water</td>
<td>28.5 mm</td>
<td>0.292 mm (1.0%)</td>
<td>0.354 mm/decade (1.2%/decade)</td>
</tr>
</tbody>
</table>

Figure from: Wentz, Ricciardulli, Hilburn, Mears: Science, July 13, 2007, How Much More Rain Will Global Warming Bring?
Climate Constraint: Radiative Cooling Limit on Evaporation

Nearly all climate models predict an enhanced radiative cooling that is balance by an increase in latent heat from precipitation

<table>
<thead>
<tr>
<th>Climate Models</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wentz et al., Science, July 13, 2007:</td>
<td>4 mm/year/decade</td>
</tr>
<tr>
<td>Yu and Weller, BAMS, Vol 88, No 4, April 2007:</td>
<td>13 mm/year/decade (C-C rate)</td>
</tr>
<tr>
<td>Hamburg Ocean Atmos. Parameters & Fluxes</td>
<td>very large</td>
</tr>
</tbody>
</table>

Explanation of Christy Result

Found a trend in the Tropical Air-Sea Temperature Difference: -0.1 K/decade (1979-1999)

Used to support their MSU Lower Tropospheric Temperature Retrieval, which indicated:
In the tropics, the troposphere is not warming as fast as the surface.
(Later was found to be incorrect)

From the standpoint of evaporation:
A trend of -0.1 K/decade in the air-sea temperature difference would greatly increase the trend in global evaporation
Geophysical Validation: Wind Speed (1)

There are ample *in situ* and radar winds to validate MW radiometer wind retrievals.
New Results for WindSat Wind Retrievals Versus Other Wind Speed Datasets
Individual overpasses: RMS variation of SSMI minus buoy difference = 1.0 m/s
Monthly Averages: RMS variation of SSMI minus buoy difference = 0.1 m/s (lag-1 correlation =0.46)
Estimate error bar is 0.05 m/s/decade at 95% confidence
SSM/I trend minus the buoy trend is 0.02 m/s/decade.
Yearly corrections (0.05-0.10 m/s) are applied to SSMI winds
These results indicate we are doing better than 0.1 K/decade

Figure from: Wentz, Ricciardulli, Hilburn, Mears: *Science*, July 13, 2007, How Much More Rain Will Global Warming Bring?
Bias (SSMI minus GPS) = -0.07 mm
Std. Dev. = 1.9 mm
Num Obs = 53,730
Credit: Carl Mears (to be published)
Distinguishing Sensor Errors from RTM Errors

Same ΔT_a (simulated minus measured) plotted versus different parameters

Same color scale: ΔT_a goes from -3K to +3K

- RTM Error Diagnostics
- Sensor Calibration Error Diagnostics

- Sun intruding into hot load

Y=Wind, X=SST
Y=Wind, X=Vapor
Y=Vapor, X=SST

Y=Orbit Position, South Pole to South Pole, X=Orbit number (5 years)
STEP-1: All Level-1 (NASA) or TDR (DMSP) datasets are reversed engineered back to radiometer counts

STEP-2: Apply a completely **consistent** set of Level-1 Routines to produce calibrated antenna temperatures

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Geolocation Analysis</th>
<th>Attitude Adjustment</th>
<th>Along-Scan Correction</th>
<th>Absolute Calibration</th>
<th>Hot Load Correction</th>
<th>Antenna Emissivity</th>
<th>Resampling Algorithm</th>
<th>Rain Threshold</th>
<th>OOB Q/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSM/I</td>
<td>NRL/RSS</td>
<td>No</td>
<td>Yes</td>
<td>APC</td>
<td>Yes</td>
<td>0</td>
<td>Opt. Intrep.</td>
<td>0.18 mm</td>
<td>Ocean RTM</td>
</tr>
<tr>
<td>TMI</td>
<td>Goddard</td>
<td>Dynamic</td>
<td>Yes</td>
<td>TA Offsets</td>
<td>No</td>
<td>3.5%</td>
<td>Opt. Intrep.</td>
<td>0.18 mm</td>
<td>Ocean RTM</td>
</tr>
<tr>
<td>AMSR-E</td>
<td>RSS</td>
<td>Fixed</td>
<td>Yes</td>
<td>APC</td>
<td>Yes</td>
<td>0</td>
<td>Opt. Intrep.</td>
<td>0.18 mm</td>
<td>Ocean RTM</td>
</tr>
<tr>
<td>AMSR-A</td>
<td>RSS</td>
<td>Dynamic</td>
<td>Yes</td>
<td>APC</td>
<td>Yes</td>
<td>0</td>
<td>Opt. Intrep.</td>
<td>0.18 mm</td>
<td>Ocean RTM</td>
</tr>
<tr>
<td>WindSat</td>
<td>NRL/RSS</td>
<td>Fixed</td>
<td>Yes</td>
<td>APC</td>
<td>Yes</td>
<td>0</td>
<td>Earth-Grid Weighted Average</td>
<td>0.18 mm</td>
<td>Ocean RTM</td>
</tr>
<tr>
<td>SSMIS</td>
<td>RSS</td>
<td>No</td>
<td>Yes</td>
<td>APC</td>
<td>Yes</td>
<td>1 - 4% Note: 1</td>
<td>Opt. Intrep.</td>
<td>0.18 mm</td>
<td>Ocean RTM</td>
</tr>
</tbody>
</table>

Note 1: Over 19 – 92 GHz
Version – 7

100 Satellite-Years of Earth System Data Records
Consistently Processed with Common Algorithms

The Products

- SST (not all sensors)
- Wind Speed
- Columnar Water Vapor
- Columnar Liquid Water
- Rain Rate

The Sensors

- SSM/I: F08, F10, F11, F13, F14, F15
- SSM/IS: F16, F17, F18
- TMI
- AMSR-E and AMSR-A
- WindSat

Availability

Backbone: F13, WindSat, F16&17 undergoing final beta testing
Will be made publicly available April 2010.

Remaining Sensors will be made publicly available end of 2010.

Products will be hosted at www.remss.com